Calculating Percentage Uncertainties when you have repeats

Reading 1
Reading 2
Reading 3
Average Reading
5.00 5.17
5.09
5.09
Uncertainty $=$ Half the Range $=\frac{5.17-5.00}{2}= \pm 0.09$
\%Uncertainty $=$ Half the Range $\times 100$ Average Reading
\% Uncertainty $=(0.09 / 5.09) \times 100=1.8 \%$

Calculating Percentage Uncertainties

 when there are NO repeat measurementsReading on meter $=12.6 \mathrm{~V}$ Resolution $=0.2 \mathrm{~V}$

Uncertainty $=$ HALF the Resolution $= \pm 0.1 \mathrm{~V}$
\%Uncertainty $=$ HALF Resolution $\times 100$ Reading Taken
\% Uncertainty $=(0.1 / 12.6) \times 100=0.8 \%$

Task

Calculate the percentage uncertainties for the following measurements:

2.

5. Extension of 0.045 m (resolution $=0.001 \mathrm{~m}$)

Combining Uncertainties

Suppose I want to work out the density of the block...

$$
\begin{aligned}
& \quad \text { Density }=\frac{\text { Mass }(\mathrm{kg})}{\text { Volume }\left(\mathrm{m}^{3}\right)} \\
& \text { Mass }=0.500 \pm 0.001 \mathrm{~kg} \\
& \text { Volume }=(6.25 \pm 0.25) \times 10^{-5} \mathrm{~m}^{3}
\end{aligned}
$$

To work out the percentage uncertainty in the density, I have to combine the percentage uncertainty in the mass with the percentage uncertainty in the volume

How do we do it?

1. Work out the Percentage Uncertainty in the volume and the mass.
2. Then add these together.

Work it out...

Density $=\frac{\text { Mass }(\mathrm{kg})}{\text { Volume }\left(\mathrm{m}^{3}\right)}$
Mass $=0.500 \pm 0.001 \mathrm{~kg}$
Volume $=(6.25 \pm 0.25) \times 10^{-5} \mathrm{~m}^{3}$

Extension: Work out the uncertainty in the density

THE RULES

What happens in the formula

$A \times B$ or $A \div B$
A^{2}
A^{n}

What to do to calculate percentage uncertainties

Add percentage uncertainty of A with percentage uncertainty in B

Double the percentage uncertainty of A

Multiply the percentage uncertainty by n

Want More Practise?

- See the worksheets in OneNote and email Miss Kent for answers
(kenta@salesian.hants.sch.uk)

