Name:			

Year 11 Lecture 3 Follow-up Questions

ANSWERS

Date:			

Time: 45 minutes

Total marks available: 36

Total marks achieved: _____

Mark Scheme

Q1.

Question Number	Acceptable Answer		Additional guidance	Mark
(a)	 Use of v = u + at Max acceleration from 0-60 time = 2.8 (m s⁻²) 	(1) (1)	Example of calculation $\frac{(60 \times 1600) \text{ m}}{(60 \times 60) \text{ s}} = 0 + a \times 9.5 \text{ s}$ Max acceleration = 2.8 m s ⁻²	2

Question Number	Acceptable Answer		Additional guidance	Mark
(b)	 Use of v² = u² + 2as Max speed with manufacturer's acceleration = 18 m s⁻¹ Or acceleration shown by police = 3.3 m s⁻² Decision and evidence required consistent with calculated values 	(1) (1) (1)	Examples for MP3: e.g. 18.3 m s^{-1} is lower than 20 m s^{-1} so should be challenged e.g. 18.3 m s^{-1} is lower than the maximum speed so should be challenged e.g. The police are suggesting a greater acceleration than the manufacturers, so it should be challenged e.g. The maximum speed achievable is less than that suggested by the police, so it should be challenged MP2: maximum manufacturer's speed with show that value of acceleration = 19.0 m s^{-1} Example of calculation $v^2 = 0^2 + 2 \times 2.8 \text{ m s}^{-2} \times 60 \text{ m}$ $v = 18.3 \text{ m s}^{-1}$	3

Question Number		Acceptable Answer		Additional guidance	Mark
(c)	•	Air resistance increases with speed so acceleration decreases (at higher speeds)	(1)	Ignore references to the mass of the car Accept friction for air resistance	
	•	The car could brake with greater negative acceleration/force than the positive acceleration/force	(1)		2

Question Number	Acceptable answers		Additional guidance	Mark
	 Attempt to find area under the graph Length from 18 000 m to 20 000 m Comparison of calculated value to 23 km e.g. The length is long enough 	(1) (1) (1)	MP1: use of triangles or counting squares MP3: conclusion to be consistent with calculated value Example of calculation Area under the graph (counting large squares) = 18.7 × 100 m s ⁻¹ × 10 s = 18 700 m	3

Q3.

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	 Two straight lines drawn between points (0, 31) to (0.6, 31) and (0.6, 31) to (10.6, 0) (1) 		1
(ii)	 Use of area under graph or equations of motion to determine distance (1) Distance travelled = 170 m which is less than 180 m so concludes car stops without colliding (1) 	Example of calculation distance = $(0.6 \text{ s x } 31 \text{ m s}^{-1}) + (10 \text{ s} \times 31 \text{ m s}^{-1}) / 2$ = 174 m	2

Question Number	Acceptable Answers	Mark
(a)(i)	Measures the final interval = 2.2 cm Or measures the total distance = 14.6cm (1)	
	Velocity = 1.1 (ms ⁻¹) (1) (independent marks, even if MP1 not awarded, 2 nd mark can be awarded if value rounds to 1.1(ms ⁻¹))	2
	Example of calculation	
	Velocity = $\frac{0.022 \text{ m}}{0.02 \text{ s}}$ or Velocity = $\frac{0.146 \text{ m} \times 2}{0.02 \text{ s} \times 13}$ Velocity = 1.1 m s^{-1}	

Question Number	Acceptable Answers	Mark
Number (a)(ii)	Use of $a = \frac{v - u}{t}$ or suitable equation of motion to calculate a (1) $a = 4.2 \text{ or } 4.3 \text{ m s}^{-2} \text{ (allow full ecf for values substituted from (i))} \text{ (in (i) and (ii) only penalise once for use of 14 gaps)}$ $\frac{\text{Example of calculation}}{\text{Using } a = \frac{v - u}{t}}$ $a = \frac{1.1 \text{ m s}^{-1} - 0}{13 \times 0.02 \text{ s}}$	2
	$13 \times 0.02 \text{ s}$ $a = 4.2 \text{ m s}^{-2}$	

Question Number	Acceptable Answers		Mark
(b)	No friction/drag between tape/trolley and timer. Or The computer does the calculation Or Student doesn't calculate velocity (NOT precision, accuracy, plots graph automatically, reaction time, parallax, human error)	(1)	1
	Total for question		5

Q5.

Question Number	Answer	Mark
	C 42 m	1
	Incorrect Answers:	
	A – 141 m is $\frac{3}{4}$ of the internal circumference of the track ($\frac{3}{4} \times 2 \times \pi \times 30 = 141$ m)	
	B – 141 m is $\frac{1}{4}$ of the internal circumference of the track ($\frac{1}{4} \times 2 \times \pi \times 30 = 47$ m)	
D – 30 m (the radius) is the displacement travelled in one direction (downwards from the start position)		

Q6.

Question Number	Answer	Mark
	A area under an acceleration-time graph	1
	Incorrect Answers:	
	B – this is equivalent to the displacement	
	C - this is equivalent to the rate of change of acceleration	
	D - this is equivalent to the acceleration	

Question Number	Acceptable Answer	Additional Guidance	Mark
(i)	use of acceleration = gradient of a velocity-time graph (1)	Accept use of $a = \frac{v-u}{t}$ Example of calculation $a = \frac{(3.0 \text{ m s}^{-1} - 0.3 \text{ m s}^{-1})}{(5.60 \text{ s} - 3.00 \text{ s})}$ $a = 1.04 \text{ m s}^{-2}$	
	• $a = 1.0 \text{ m s}^{-2}$ (1)		(2)

Question Number	Acceptable	Answer	Additional Guidance	Mark
(ii)	 initial posit acceleration between 2 s and 6 s final negati acceleration between 15 and 19 s 	ecf for accele	± 1.0 s tolerance for plotted times ecf for candidate's value of acceleration from part (a)(i)	5
	 region of zero acceleration between 6. and 15.0 s magnitude acceleration 	of (1)	Time / s	
	1 m s ⁻²	ns =		(3)

Q8.

Question Number	Answer	Mark
	B distance	1
l '	Incorrect Answers:	
	A – acceleration is a vector quantity	
	C – momentum is a vector quantity	
	D – velocity is a vector quantity	

Question Number	Answer		Mark
(a)	Same (downwards) acceleration Or acceleration = g (accept constant acceleration)	(1)	1
(b)(i)	The ball is in contact with the floor (accept the ball bounces)	(1)	1
(b) (ii)	Lower gradient Or the lines would be not be as steep	(1)	1
(c)	Use of equation(s) of motion to find s Or use of distance = area under the graph Or use of GPE = KE $s = 1.1 \text{ m} - 1.4 \text{ m}$ Example of calculation $(4.7 \text{ m s}^{-1})^2 = (0 \text{ m s}^{-1})^2 + (2 \times 9.81 \text{ m s}^{-2} \times s)$ $s = 1.13 \text{ m}$	(1) (1)	2
(d)(i)	Use of KE = $\frac{1}{2} mv^2$ KE = 1.1 - 1.3 (J) (no ue) Example of calculation KE = $\frac{1}{2} \times 0.40 \text{ kg} \times (2.4 \text{ m s}^{-1})^2$ = 1.15 J	(1) (1)	2
(d)(ii)	Use of GPE = KE $h = 0.27 \text{ m} - 0.32 \text{ m} \qquad \text{(ecf from 16(d)(i))}$ (If area under graph or an equation of motion is used e.g. $h = \frac{(u+v)t}{2}$ or $v^2 = u^2 + 2as$ only MP2 can be scored) $\frac{\text{Example of calculation}}{0.4 \text{ kg} \times 9.81 \text{ Nkg}^{-1}}$ $h = 0.31 \text{ m}$	(1) (1)	[2]
(e)	(Elastic potential) energy transferred to thermal energy Or energy dissipated as heat	(1)	1
	Total for question		10