Year 11 Lecture 3 Follow-up Questions

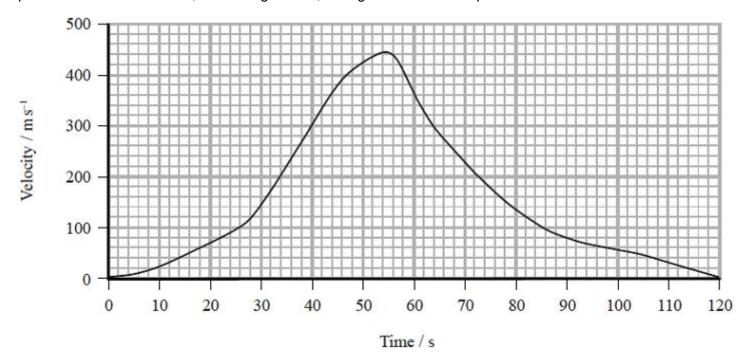
Date:			

Time: 45 minutes

Total marks available: 36

Total marks achieved: _____

Questions


Q1.

٩n	notorist received a speeding penalty notice, from the police, for a short journey along 120 m of road	l .
	The car's specification states that the minimum time for the car to accelerate from 0 to 60 miles peur is 9.5 seconds.	er
	Show that the maximum value for the average acceleration of the car over 9.5 s is about 3 m s ⁻² . 1 mile = 1600 m	(2)
		(2)
(b)	The police recorded a maximum speed for the car of 20 m s ⁻¹ .	
	The motorist knows that the speed at the start and at the end of the 120 m journey was zero. Assume that the car had:	
•	constant positive acceleration, equal to the value in part (a), for the first 60 m of the journey constant negative acceleration of the same magnitude for the final 60 m of the journey.	
	Determine whether the motorist should challenge the penalty notice.	(3)
		(3)
•••		
•••		
•••		
•••		
(c)	Explain why the assumptions about the acceleration in (b) may not be correct in practice.	
		(2)
•••		
•••		

The world land speed record of 341 m $\rm s^{-1}$ was set in October 1997. In an attempt to break this record, a new supersonic car has been developed called the Bloodhound.

The developers of the Bloodhound have used computer modelling to produce a velocity-time graph for the predicted motion of the car, on a straight track, during the record attempt.

A track of length 23 km is available for the record attempt.

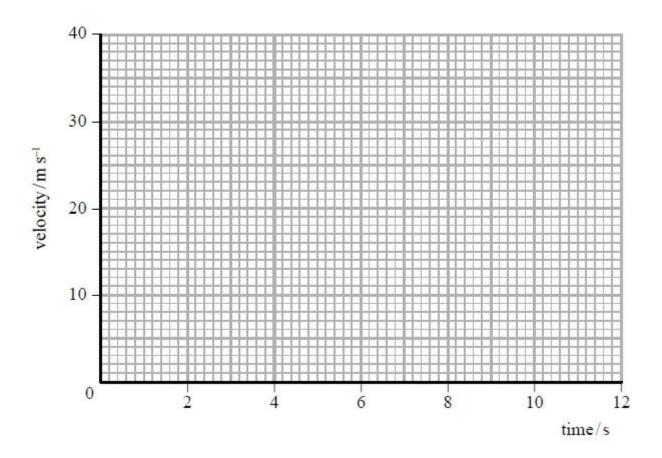
Determine whether this track is long enough.

5 5	
	(3)

(Total for question = 3 marks)

The photograph shows cars travelling on a straight section of a motorway.

The maximum speed limit on a motorway in the U.K. is 31ms⁻¹.



(source: http://tracksideviews.com/tag/motorway/)

A car is travelling along the motorway at 31ms⁻¹. The driver sees stationary traffic 180 m ahead. After 0.6 s the driver reacts by applying a constant braking force that stops the car in 10 s.

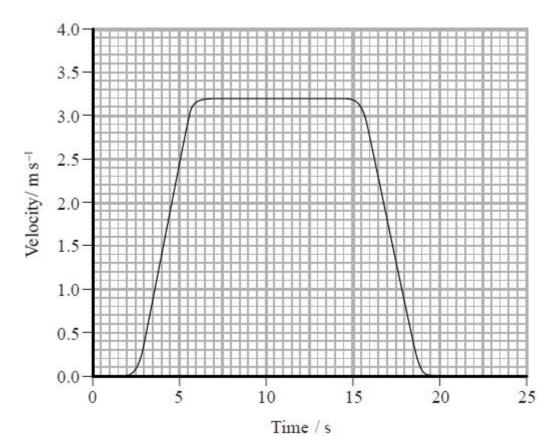
(i) Draw a velocity-time graph of the car's motion, from the instant the driver sees the stationary traffic until the car stops.

(ii) Analyse the data to determine whether the car stops without colliding with the stationary traffic. (2)
(Total for question = 3 marks)
14. A trolley moves down a ramp from rest. Attached to the trolley is a strip of paper which is pulled through a cker tape timer. The ticker tape timer makes 50 dots each second on the strip of paper.
he strip of paper is shown below. The start and the end of the journey are indicated.
start
a) (i) Using measurements from the tape show that the final velocity of the trolley is about 1 m s ⁻¹ (2)

.....

(ii)	Hence calculate the average acceleration of the trolley.	(0)
		(2)
•••		
•••		
•••		
	Average acceleration =	
	Using a ticker tape timer is one method of measuring the speed of a moving object in a laborate other method is to use a light gate with a data logger and computer.	ory.
Su	ggest an advantage of using the light gate method rather than using a ticker tape timer.	
		(1)
•••		
	(Total for Question = 5 r	narks)
Q5		
abo	swer the question with a cross in the box you think is correct (\boxtimes). If you change your minout an answer, put a line through the box (\boxtimes) and then mark your new answer with a crosh. An athlete runs a race around three quarters of a circular track of radius 30 m using the inside	ss
	start	
	end ←30 m→	
\ <i>\\</i> /h	and in the magnitude of the displacement of the athlete at the and of the race?	
VVI	nat is the magnitude of the displacement of the athlete at the end of the race? A 141 m	
	■ B 47 m	
	C 42 m D 30 m (Total for question = 1 mark)	

Which of the following can be used to determine the magnitude of velocity?

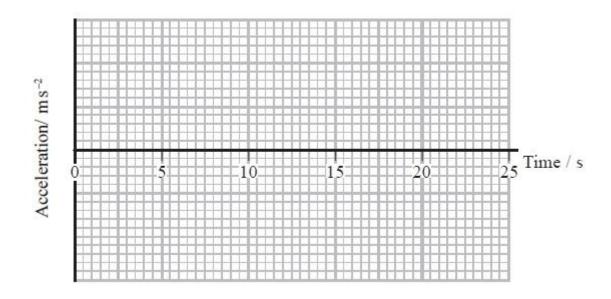

(1)

- A area under an acceleration-time graph
- B area under a velocity-time graph
- **C** gradient of an acceleration-time graph
- **D** gradient of a velocity-time graph

(Total for question = 1 mark)

Q7.

A lift moves upwards from the ground to the tenth floor of a building. The velocity-time graph for the lift is shown.



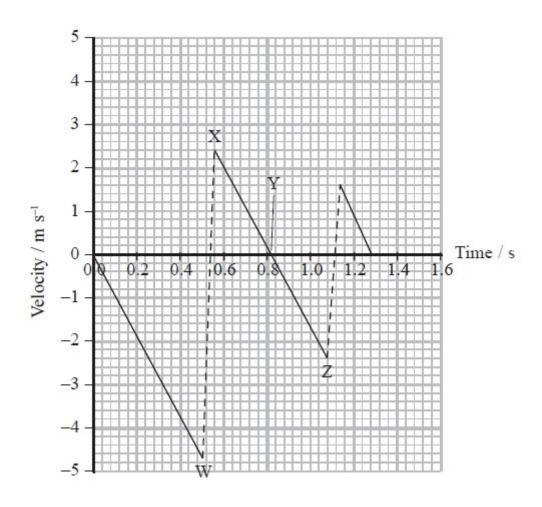
Maximum acceleration =

(ii) Sketch the corresponding acceleration-time graph on the axes below.

(3)

(2)

Q8.


Which of the following is **not** a vector quantity?

(1)

- A acceleration
- **B** distance
- C momentum
- D velocity

(Total for question = 1 mark)

A basketball is dropped vertically onto the horizontal ground and bounces twice before being caught. The graph shows how the velocity of the basketball varies with time.

(a) Sugge	ist why the downwa	ira sioping lines are a	ıı parallel.		(1)
(b) (i) Sta	te the reason for the	e upwardly sloping do	otted lines.		
					(1)
(ii) Des	scribe how the grad	lient of the dotted line	s would change	if the basketball wa	 s not fully inflated. (1)

(c)	Calculate the initial height through which the basketball fell.	(2)
		(2)
	Height =	
(d)	(i) Show that the kinetic energy of the basketball at X is about 1 J. mass of ball = 0.4 kg	
	mass of ball – 0.4 kg	(2)
	(ii) Hence calculate the height of the basketball at Y.	(2)
		(2)
	Height =	
(e)	The velocity of the basketball on impact at W is greater than the velocity on impact at Z.	
	State a reason for the difference in velocities at W and Z.	(1)
		(1)

(Total for question = 10 marks)