SOLUTION CALCULATIONS

1. Calculate the volume of 0.50 mol dm^{-3} sodium hydroxide solution which is needed to exactly neutralise $50.00 \text{ cm}^3 0.20 \text{ mol dm}^{-3}$ nitric acid solution.

$$NaOH + HNO_3 \rightarrow NaNO_3 + H_2O$$

- i) Find the number of moles of nitric acid present
- ii) How many moles of sodium hydroxide will react with the nitric acid?
- iii) Deduce the volume of the sodium hydroxide solution.
- 2. Calculate the volume of 0.20 mol dm⁻³ potassium hydroxide solution which is needed to exactly neutralise 10.00 cm³ 0.45 mol dm⁻³ nitric acid solution.

$$KOH + HNO_3 \rightarrow KNO_3 + H_2O$$

- i) Find the number of moles of nitric acid present
- ii) How many moles of potassium hydroxide will react with the nitric acid?
- iii) Deduce the volume of the potassium hydroxide solution.
- 3. Calculate the concentration in mol dm^{-3} of hydrochloric acid solution if 10.00 cm³ of the acid exactly neutralises 25.00 cm³ of 0.5 mol dm^{-3} potassium hydroxide solution

$$KOH + HCI \rightarrow KCI + H_2O$$

- i) Find the number of moles of potassium hydroxide present
- ii) How many moles of hydrochloric acid will react with the potassium hydroxide?
- iii) Deduce the concentration of the hydrochloric acid solution.
- 4. Calculate the concentration in mol dm^{-3} of sulphuric acid solution if 25.00 cm³ of the acid exactly neutralises 25.00 cm³ of 0.5 mol dm^{-3} potassium hydroxide solution

$$2 \text{ KOH} + \text{H}_2 \text{SO}_4 \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{H}_2 \text{O}$$

- i) Find the number of moles of potassium hydroxide present
- ii) How many moles of sulphuric acid will react with the potassium hydroxide?
- iii) Deduce the concentration of the sulphuric acid solution.
- 5. Calculate the volume of 0.01 mol dm^{-3} hydrochloric acid solution which is needed to exactly neutralise $25.00 \text{ cm}^3 0.02 \text{ mol dm}^{-3}$ calcium hydroxide solution.

$$Ca(OH)_2 + 2HCI \rightarrow CaCl_2 + 2H_2O$$

- i) Find the number of moles of calcium hydroxide present
- ii) How many moles of hydrochloric acid will react with the calcium hydroxide?
- iii) Deduce the volume of the hydrochloric acid solution.
- 6. Calculate the concentration in mol dm⁻³ of hydrochloric acid solution if 100.00 cm³ of the acid exactly neutralises 50.00 cm³ of 0.05 mol dm⁻³ barium hydroxide solution

$$Ba(OH)_2 + 2HCI \rightarrow BaCl_2 + 2H_2O$$

- i) Find the number of moles of barium hydroxide present
- ii) How many moles of hydrochloric acid will react with the barium hydroxide?
- iii) Deduce the concentration of the hydrochloric acid solution.

7. Calculate the concentration in mol dm^{-3} of sulphuric acid solution if 50.00 cm³ of the acid exactly neutralises 25.00 cm³ of 0.04 mol dm^{-3} sodium hydroxide solution

2 NaOH +
$$H_2SO_4 \rightarrow Na_2SO_4 + 2 H_2O$$

- i) Find the number of moles of sodium hydroxide present
- ii) How many moles of sulphuric acid will react with the sodium hydroxide?
- iii) Deduce the concentration of the sulphuric acid solution.
- 8. Calculate the concentration in mol dm⁻³ of phosphoric acid solution if 25.00 cm³ of the acid exactly neutralises 75.00 cm³ of 0.06 mol dm⁻³ potassium hydroxide solution

$$3 \text{ KOH} + \text{H}_3\text{PO}_4 \rightarrow \text{K}_3\text{PO}_4 + 3 \text{H}_2\text{O}$$

- i) Find the number of moles of potassium hydroxide present
- ii) How many moles of phosphoric will react with the potassium hydroxide
- iii) Deduce the concentration of the phosphoric acid solution.
- 9. Calculate the volume of 0.01 mol dm^{-3} calcium hydroxide solution which is needed to exactly neutralise 50.00 cm³ 0.025 mol dm^{-3} phosphoric acid solution.

$$3 Ca(OH)_2 + 2 H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 6 H_2O$$

- i) Find the number of moles of phosphoric acid present
- ii) How many moles of calcium hydroxide will react with the phosphoric acid?
- iii) Deduce the volume of the calcium hydroxide solution.
- 10. Calculate the volume of $0.015 \text{ mol dm}^{-3}$ phosphoric acid solution which is needed to exactly neutralise $25.00 \text{ cm}^3 0.024 \text{ mol dm}^{-3}$ calcium hydroxide solution.

$$3 Ca(OH)_2 + 2 H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 6 H_2O$$

- i) Find the number of moles of calcium hydroxide present
- ii) How many moles of phosphoric acid will react with the calcium hydroxide?
- iii) Deduce the volume of the phosphoric acid solution.