CHEMICAL CALCULATIONS

1. Calculate the mass of copper(II) chloride which is produced when 39.75 g of copper(II) oxide reacts with excess hydrochloric acid.

$$CuO$$
 + 2 HCl \rightarrow $CuCl_2$ + H_2O

- i) Find the number of moles of copper(II) oxide present in 39.75g
- ii) How many moles of CuCl₂ will form when 39.75q of copper(II) oxide reacts?
- iii) Deduce the mass of copper(II) chloride which is formed to 3 significant figures.
- 2. Calculate the mass of sodium nitrate which is formed when 2.65 g of sodium carbonate reacts with excess nitric acid solution.

$$Na_2CO_3 + 2 HNO_3 \rightarrow 2 NaNO_3 + H_2O + CO_2$$

- i) Find the number of moles of sodium carbonate present in 2.65 q
- ii) How many moles of sodium nitrate will be formed when 2.65 q of Na₂CO₃ reacts?
- iii) Deduce the mass of sodium nitrate which is formed.
- 3. Calculate the mass of copper(II) hydroxide which is formed when 5.61 g of potassium hydroxide in a solution reacts with excess copper(II) sulphate solution

$$CuSO_4 + 2 KOH \rightarrow Cu(OH)_2 + K_2SO_4$$

- i) Find the number of moles of potassium hydroxide present in 5.61 g
- ii) How many moles of copper(II) hydroxide will be formed when 5.61 g of KOH reacts?
- iii) Deduce the mass of copper(II) hydroxide which is formed to 3 significant figures.
- 4. Calculate the mass of oxygen which is needed to react with 5.75g of sodium to form sodium oxide.

$$4 \text{ Na} + O_2 \rightarrow 2 \text{ Na}_2 O$$

- i) Find the number of moles of sodium atoms present in 5.75g of sodium.
- ii) How many moles of oxygen are needed to react with 5.75g of sodium?
- iii) Deduce the mass of oxygen which is needed to 3 significant figures.
- 5. Calculate the mass of chromium(III) oxide which is needed to react with 10.8g of aluminium in the reaction shown below.

$$Cr_2O_3$$
 + 2 Al \rightarrow 2 Cr + Al₂O₃

- i) Find the number of moles of aluminium atoms present in 10.8g of aluminium.
- ii) How many moles of chromium(III) oxide are needed to react with 10.8g of aluminium?
- iii) Deduce the mass of chromium(III) oxide which is needed to 3 significant figures.
- 6. Calculate the mass of sodium which reacts with excess water to make 0.7g of hydrogen.

$$2 \text{ Na} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ NaOH} + \text{H}_2$$

- i) Find the number of moles of hydrogen molecules present in 0.7g of hydrogen.
- ii) How many moles of sodium are needed to produce 0.7g of hydrogen?
- iii) Deduce the mass of sodium which is needed.

7.	Calculate the mass of magnesium which reacts with excess phosphoric acid solution to
	make 53.685g of magnesium phosphate.

$$3 \text{ Mg} + 2 \text{ H}_3 \text{PO}_4 \rightarrow \text{Mg}_3 (\text{PO}_4)_2 + 3 \text{ H}_2$$

- i) Find the number of moles of magnesium phosphate present in 53.685g.
- ii) How many moles of magnesium are needed to produce 53.685g of magnesium phosphate?
- iii) Deduce the mass of magnesium which is needed to 3 significant figures.
- 8. Calculate the mass of chlorine which is needed to react with excess aluminium to make 2.67g of aluminium chloride.

$$2 AI + 3 CI2 \rightarrow 2 AICI3$$

- i) Find the number of moles of aluminium chloride present in 2.67g of aluminium chloride.
- ii) How many moles of chlorine molecules are needed to produce 2.67g of AICI3?
- iii) Deduce the mass of chlorine which is needed.
- 9. Calculate the mass of aluminium sulphate present in a solution which reacts with excess sodium hydroxide solution to produce 7.105g of sodium sulphate.

$$Al_2(SO_4)_3 + 6 NaOH \rightarrow 2 Al(OH)_3 + 3 Na_2SO_4$$

- i) Find the number of moles of sodium sulphate present in 7.105g of sodium sulphate.
- ii) How many moles of aluminium sulphate are needed to produce 7.105g of sodium sulphate?
- iii) Deduce the mass of aluminium sulphate which is needed to 3 significant figures.
- 10. Calculate the mass of aluminium which is needed to react with excess Fe_3O_4 to form 864.9g of iron.

$$8AI + 3 Fe_3O_4 \rightarrow 9 Fe + 4 Al_2O_3$$

- i) Find the number of moles of iron present in 864.9g of iron.
- ii) How many moles of aluminium are needed to produce 864.9g of iron?
- iii) Deduce the mass of aluminium which is needed.