

Lecture objectives:

Demonstrate an understanding of:

- How elements are arranged in the periodic table.
- Trends within groups of the periodic table
- Periodicity

- Ordered elements according to increasing atomic mass.
- Similar properties in vertical columns.
- Left gaps for elements that had not been discovered.

Property	Eka- aluminium (Ea)	Gallium (Ga)
Atomic mass	About 68	70
Density (g/cm³)	6.0	5.9
Melting point	Low	29.8°c
Formula of oxide	Ea ₂ O ₃	Ga ₂ O ₃
Density of oxide (g/cm³)	5.5	5.88

The periodic table

How did Mendeleev arrange the elements in the periodic table?

- Today, we know that the atomic number gives the number of protons.
- He found that certain lines in the X-ray spectrum of each element moved by the same amount each time you increased the **atomic number** by one.

Moseley

The discovery of the atomic number

Comparison:

Mendeleev's & the modern periodic table

Mendeleev

- Arranged according to atomic mass
- A lot of gaps were present
- No group 8/0 predicted

Modern day

- Arranged by proton number (what we now call atomic number)
- Gaps filled
- Group 8/0 has been discovered

The arrangement of the periodic table

Groups and periods

Groups

- Vertical columns
- Same number of outer-shell electrons
- Similar chemical properties
- Old system was 1-8. New system in 1-18

Periods

- Horizontal rows
- The number of the highest energy electrons shell in an element's atom

Exam question

This question refers to the elements in the first 3 periods of the periodic table

- (a) Identify an element from the first three periods that fits each of the following descriptions.
 - (I) The element that forms a 2- Ion with the same electronic configuration as Ne.

.....[1]

(ii) The element that forms a 3+ ion with the same electronic configuration as Ne.

.....[1]

What are the trends within a group?

- Hg 200.59 80
- Reactivity
- Solubility of compounds

Melting and boiling points

Re

Tc

Ru

Os

Rh

Pd

Pt

Ag

Au

196.97

Cd

Gd

3 Li

11 Na Sodium

19

Potassium

37 Rb

55 Cs Caesium

87 Fr

Group 1

What are the chemical and physical trends of group 1?

Group 1 - The Alkali Metals

THE GROUP 1 ELEMENTS ARE SHINY, SOFT, AND HIGHLY REACTIVE METALS, NONE OF WHICH OCCUR NATURALLY AS FREE ELEMENTS

11 Na Sodium

19 Potassium

37 Rb Rubidium

55 Cs Caesium

87 Francium MELTING POINTS

GROUP 1 METALS HAVE ONE VALENCE ELECTRON

THE REACTIVITY OF THE GROUP 1 METALS INCREASES DOWN THE GROUP AS THE OUTER ELECTRON GETS FURTHER FROM THE NUCLEUS & BECOMES EASIER TO REMOVE

THE ALKALI METALS REACT WITH WATER TO FORM METAL HYDROXIDES

METALS OXYGEN TO FORM METAL OXIDES

METALS AIKAII HALOGENS TO FORM IONIC SALTS

USES

LITHIUM

ANTI

DEPRESSANTS

BATTERIES

SODIUM

STREET LAMPS TABLE SALT

POTASSIUM

FERTILISERS

SOAPS

RUBIDIUM & CAESIUM

> ATOMIC CLOCKS

FRANCIUM

RADIOACTIVE

4 Be Beryllium

Group 2 - The Alkaline Earth Metals

THE GROUP 2 ELEMENTS ARE SHINY, SILVERY-WHITE, AND SOMEWHAT REACTIVE METALS, SOME OF WHICH OCCUR NATURALLY AS FREE ELEMENTS

12 Mg Magnesium

> 20 Ca Calcium

38 Sr Strontium

> 56 Ba Barium

> 88 Ra Radium

MELTING POINTS

THE REACTIVITY OF THE GROUP 2 METALS INCREASES DOWN THE GROUP AS THE OUTER ELECTRONS GET FURTHER FROM THE NUCLEUS BECOME EASIER TO REMOVE

THEY ARE LESS REACTIVE THAN GROUP 1

THE ALKALINE EARTH METALS REACT WITH WATER TO FORM METAL HYDROXIDES...

M(OH)

FOR 4 ш

METALS WITH OXYGEN TO FORM METAL OXIDES

GROUP 2 METALS WITH REACT HALOGENS TO FORM METAL HALIDES

RADIUM

ALKALINE EARTH

œ

BERYLLIUM

EMERALDS.

TELESCOPE MIRRORS

MAGNESIUM

ALLOY WHEELS

FLARES

CALCIUM

BONES

BLACKBOARD CHALK

STRONTIUM

FIREWORKS

TREATING OSTEOPOROSIS

RAT POISON

GLASSMAKING

 Redox reactions are the most comment reactions of group 2 elements

 The group 2 metal is oxidised and reduces the non-metal

- This happens with:
 - oxygen
 - water
 - acid

Metal + oxygen → metal oxide

Task:

- 1. Write the balanced symbol equation for calcium reacting with oxygen
- 2. Show, using half equations that the calcium is oxidised and the oxygen is reduced.
- 3. Describe what you would see if a piece of Magnesium was burnt

Redox reaction 1:

Reacting with oxygen

Metal + water → metal hydroxide + hydrogen

Task:

- 1. Write the balanced symbol equation for magnesium reacting with water
- 2. Show, using half equations that the magnesium is oxidised and the hydrogen is reduced.
- 3. Describe what you would see during this reaction

Redox reaction 2:

Reacting with water

Metal + acid → metal salt + hydrogen

Task:

- 1. Write the balanced equation for calcium reacting with hydrochloric acid
- 2. Show, using half equations that the calcium is oxidised and the hydrogen is reduced.
- 3. Describe what you would see during this reaction
- 4. How could you prove the gas evolved was hydrogen

Redox reaction 3:

Reacting with acid

Oxides react with water forming OH^- ions $CaO_{(s)} + H_2O_{(l)} \rightarrow Ca^{2+}_{(aq)} + 2OH^-_{(aq)}$

Hydroxides are only slightly soluble in water.

Form a solid when added in excess (past the saturation point) $Ca^{2+}_{(aq)} + 2OH^{-}_{(aq)} \rightarrow Ca(OH)_{2}$

Group 2 oxides & hydroxides

React with water

Group 2 hydroxides

What is the trend in solubility and alkalinity?

9 F Fluorine

17 Cl

35 Br Bromine

> 53 I Iodine

85 At Astatine

117 Uus _{Ununseptium}

Group 7

What are the chemical and physical trends of group 7?

Group 7 - The Halogens

GROUP 7 IS THE ONLY GROUP THAT CONTAINS ELEMENTS IN ALL THREE STATES OF MATTER. THEY ARE ALL REACTIVE NON-METALS

17 Cl

35 Br Bromine

> 53 I

85 At Astatine

117 Uus _{Ununseptium} IODINE & ASTATINE
SOLIDS AT ROOM TEMPERATURE

B R O M I N E
LIQUID AT ROOM TEMPERATURE

FLUORINE & CHLORINE
GASES AT ROOM TEMPERATURE

THE
HALOGENS
ALL FORM
DIATOMIC
MOLECULES
EXCEPT
FOR
ASTATINE

ALL
OF THE
GROUP 7 ELEMENTS
HAVE
SEVEN
VALENCE ELECTRONS

THE REACTIVITY OF THE HALOGENS

DECREASES DOWN THE GROUP

AS IT BECOMES HARDER TO

A D D A N F I F C T R O N

1 GRAM

ESTIMATED AMOUNT OF

ASTATINE
IN THE EARTH'S CRUST
AT ANY ONE TIME

HYDROFLUORIC ACID LEACHES CALCIUM FROM BONES AND CAN CAUSE VERY PAINFUL BURNS

DISSOLVES GLASS

THE HALOGENS
REACT WITH
OXYGEN TO FORM
HALOGEN OXIDES

THE HALOGENS
REACT WITH
METALS TO FORM
METAL HALIDES

THE HALOGENS
ARE USED AS
OXIDISING AGENTS
WHILST
HALIDE IONS
ARE USED AS
REDUCING AGENTS

 F_2

IONS

USES OF THE HALOGENS

FLUORINE

TOOTHPASTE

REFRIGERANT GASES

CHLORINE

BLEACH

CHEMICAL WARFARE

BROMINE

FIRE RETARDANT MATERIALS

IODINE

DISINFECTANTS

- Do not occur in elemental form in nature
- Found as stable halides dissolved in water and in Sodium or potassium solid deposits e.g. salt mines
- All form diatomic gases apart from astatine

Group 7 (17)

Physical properties

Physical properties

What are the trends in the physical properties of group 7 elements?

Halogen molecule	Number of electrons	Boiling point/°C	Appearance and state at RTP	Trend
F ₂	18	-188	pale yellow gas	more electrons
CI ₂	34	-34	pale green gas	stronger London forces
Br ₂	70	59	red-brown liquid	more energy required to break
I ₂	106	184	shiny grey-black solid	the intermolecular forces
At ₂	170	230	never been seen	boiling point increases

Trends in reactivity

What are the trends in the chemical reactivity of group 7 elements?

Halogen molecule	Atomic radius	Number of inner shells	Trend
F ₂	0	1	Atomic radius increases
CI ₂	0	2	 More inner shells so shielding
Br ₂		3	increases
I ₂	0	4	Less nuclear attraction to capture an electron from another species
At ₂		5	 Reactivity decreases

Demonstrating the reactivity of the halogens

	Halide solution			
	Potassium chloride	Potassium bromide	Potassium iodide	
Chlorine				
Bromine				
lodine				

- A more reactive halogen displaces a less reactive halogen in a compound.
- Redox reaction

The results

This question is about halogens. Bromine is used to extract iodine from a solution containing iodide ions. Write an ionic equation for the reaction. Explain why iodine is less reactive than bromine.

Exam question

Halogen displacement

What are the trends across a period?

Periodicity

- Nuclear charge increases
- Electron shielding remains approximately constant
- So electrons are drawn into the nucleus

Atomic radii

Decreases across a period

- Nuclear charge increases
- Electron shielding increases due to an addition of a new shell
- So nuclear attraction is less

ANGSTROMS

- UNKNOWN
- 0.00-0.50
- 0.50-0.75
- 0.75-1.00
- 1.00-1.25
- 1.25-1.50
- 1.50-1.75
- 1.75-2.00
- 2.00-2.25
- 2.25-2.60

Atomic radii

Increases down a group

The Periodic Table is arranged in periods and groups.

Elements in the Periodic Table show a periodic trend in atomic radius.

State and explain the trend in atomic radius from Li to F.

- Nuclear attraction imcreases
- Electron shielding remains relatively constant
- So atomic radius decreases
- The electron is harder to remove

Ionisation energies

Increases across a period

Structures

How does the structure of an element change across a period?

	netallic cture	Giant covalent structure Strong covalent bonds between atoms					
between c	tallic bonds ations and d electrons			Weak London forces between molecules			
Li	Ве	В	С	N ₂	02	F ₂	Ne
Na	Mg	Al	Si	P ₄	S ₈	CI ₂	Ar

Melting & boiling points

Linked to the structure

- Giant structures= high boiling point and melting point
- Simple molecular substances= low melting and boiling points

Exam question

A chemist determines some properties of two substances, **C** and **D**.

The results are shown in the table.

	С	D
Melting point / °C	660	801
Electrical conductivity when solid	Yes	No
Electrical conductivity when molten	Yes	Yes
Solubility in water	No	Yes

Which row correctly identifies the bonding and structure in C and D?

	С	D
Α	giant ionic	giant metallic
В	giant ionic	giant ionic
С	giant metallic	giant metallic
D	giant metallic	giant ionic

Exam question

.......

This question refers to the elements in the first 3 periods of the periodic table

The element with the largest atomic radius. [1] The element in Period 3 with the highest boiling point. [1]