

Chemistry lectures

Timetable

Miss Hayward

27th April: Atomic structure

4th May: Bonding & Structure

11th May: Trends

Mrs Faux

18th May: Oxidation numbers

1st June: Calculations (1)

6th June: Calculations (2)

What do you need?

- Periodic table
- Paper, pen and a calculator
- A phone available for Kahoots/ an ability to split the screen

During lectures

- Microphones on mute and cameras off
- Any questions can be asked in the chat-I will answer as soon as I can

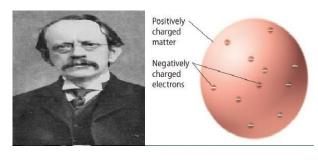
You will be set work at the end of the session.

Learning objectives:

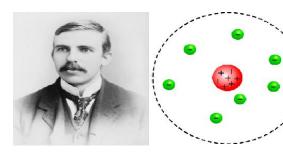
Part one:

- -To revise the history of the atom
- -To be able to calculate the number of electrons in a shell
- To learn what an atomic orbital is and give examples.

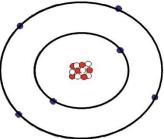
Part two:


- -Revise what isotopes are.
- -Revise how to calculate relative atomic mass from isotopic mass and abundance
- -To learn how to calculate abundance from relative atomic mass and isotopic mass.

The History of the atom

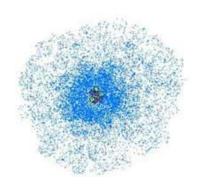

Need to revise this? Need an extension?

1 - Dalton's Model: atoms are solid spheres



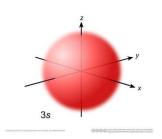
2 - Thompson's model: Plum pudding

2 - Rutherford's model: electrons circling a nucleus



3 - Bohr's model: Planetary model

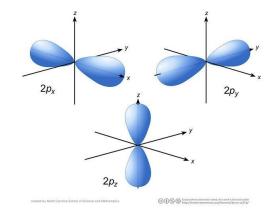
Shells are made of atomic orbitals


A region within an atom that can hold up to **2 electrons** (which can be anywhere within the orbital.)

The **shape** of the **orbital** is known as an **electron cloud**. This will be a **negatively charged cloud**

The 1st Shell: 2 electrons

- One s-orbital
- Each s-orbital holds up to two electrons
- An s-orbital has a spherical shape

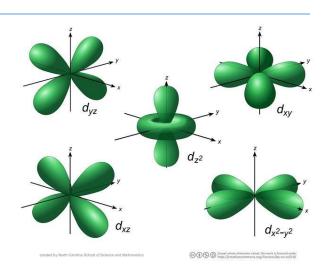

The 2nd shell: 8 electrons

The 2nd shell has:

- 1. One s-orbital (2 electrons)
- 2. Three p-orbitals (2 electrons each= 6 electrons in total)

p-orbitals

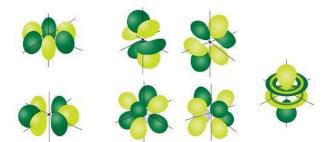
- Dumbbell shaped
- There are 3 p-orbitals


The 3rd Shell: 18 electrons

The 3rd shell has:

- 1. One s-orbital (2 electrons)
- 2. Three p-orbitals (2 electrons each= 6 electrons in total)
- 3. Five d-orbitals (2 electrons each= 10 electrons in total)

D-orbitals


- Vary in shape
- Each d-orbital holds up to two electrons

The 4th Shell: 32 electrons

The 4th shell has:

- 1. One s-orbital (2 electrons)
- 2. **Three p-orbitals** (2 electrons each= 6 electrons in total)
- 3. **Five d-orbitals** (2 electrons each= 10 electrons in total)
- 4. **Seven f-orbitals** (2 electrons each= 14 electrons in total)

F-orbitals

- Vary in shape
- seven f-orbital can hold up to 2 electrons.

Questions:

- 1. Name the 4 different types of orbitals
- 2. State the shapes of the s and p-orbital
- 3. Fill in the table

Challenge:

Using the idea of orbitals, prove that there are 2 electrons in the first shell, 8 electrons in the second shell and 18 electrons in the third shell.

Shell number	Types or orbitals present
1	
2	
3	
4	

Isotopes & calculating relative atomic mass

Isotopes

Atoms of the same element with the same number of protons and electrons but a different number of neutrons.

Need to revise isotopes?

Carbon-12 98.9% 6 protons 6 neutrons

Carbon-13 1.1% 6 protons 7 neutrons

Carbon-14 <0.1% 6 protons 8 neutrons

Relative atomic mass

So, the relative atomic mass must take into account two things:

- 1. The mass of each of the isotopes
- 2. The percentage abundance of each isotope

The weighted mean mass of an atom compared to 1/12 of the mass of an atom of carbon=12

Questions

Calculate the relative atomic mass of the following elements. Give your answers to two decimal places.

- A sample of potassium consisting of 93.20% of ³⁹K, 0.07% of ⁴⁰K, and 6.73% of ⁴¹K. (1 mark)
- b A sample of antimony consisting of 56.87% of ¹²¹Sb and 43.13% of ¹²³Sb. (1 mark)
- c A sample of neon consisting of 91.07% of ²⁰Ne and 8.93% of ²²Ne. (1 mark)

Questions

- 1. Boron occurs naturally as a mixture of two isotopes, B-10 and B-11. Calculate the percentage abundance by mass in sample of Boron with the relative atomic mass of 10.8.
- **2.** The relative atomic mass of thallium is 204.4. Thallium has two isotopes: thallium-203 and thallium-205. Calculate the percentage abundance of the isotopes