RELATIVE ATOMIC MASS The relative atomic mass (A_r) of atoms is the average mass of all the different isotopes of an element (taking into account the amount of each isotope) on a scale where 12 C atoms have a mass of exactly 12. Imagine you have 90 balls with mass 200 g, and 10 balls with mass 300 g. The average mass of the balls is given by: Average mass of balls = $$\frac{\text{total mass of all the balls}}{\text{total number of balls}} = \frac{[(90 \times 200) + (10 \times 300)]}{90 + 10} = \frac{21000}{100} = 210 \text{ g}$$ The relative atomic mass of atoms is worked out in a similar way: Relative atomic mass $(A_r) = \underline{\text{total mass of all atoms}}$ total number of atoms | Element | Isotopes | Abundance | Relative atomic mass (A _r) (to 3sf) | |-----------|--------------------------------|-----------|---| | Chlorine | ³⁵ Cl | 75.8% | $A_{\rm r} = [(35 \times 75.8) + (37 \times 24.2)] = 3548.4 = 35.5 (3sf)$ | | | ³⁷ Cl | 24.2% | 75.8 + 24.2 100 | | Lithium | ⁶ 3Li | 7.6% | | | | ⁷ ₃Li | 92.4% | | | Bromine | ⁷⁹ ₃₅ Br | 50.7% | | | | ⁸¹ ₃₅ Br | 49.3% | | | Copper | ⁶³ Cu | 69.2% | | | | ⁶⁵ Cu | 30.8% | | | Fluorine | ¹ 9 ₉ F | 100.0% | | | Magnesium | ²⁴ ₁₂ Mg | 79.0% | | | | ²⁵ ₁₂ Mg | 10.0% | | | | ²⁶ ₁₂ Mg | 11.0% | | | Iron | ⁵⁴ Fe | 5.8% | | | | ⁵⁶ Fe | 91.8% | | | | ⁵⁷ Fe | 2.1% | | | | ⁵⁸ Fe | 0.3% | | | Krypton | ⁷⁸ Kr | 0.4% | | | | ⁸⁰ Kr | 2.3% | | | | ⁸² Kr | 11.6% | | | | ⁸³ Kr | 11.5% | | | | ⁸⁴ Kr | 57.0% | | | | ⁸⁵ Kr | 17.3% | |