edexcel

SALESIAN COLLEGE

MATHEMATICS DEPARTMENT

HIT THE GROUND RUNNING
NOTES AND EXAMPLES




edexcel

Expanding brackets and simplifying
expressions

A LEVEL LINKS
Scheme of work: 1a. Algebraic expressions — basic algebraic manipulation, indices and surds

Key points

¢ When you expand one set of brackets you must multiply everything inside the bracket by
what is outside.

¢ When you expand two linear expressions, each with two terms of the form ax + b, where
a#0and b #0, you create four terms. Two of these can usually be simplified by collecting
like terms.

Examples

Example 1

Example 2

Example 3

Example 4

Expand 4(3x — 2)

4(3x—2)=12x -8

Multiply everything inside the bracket
by the 4 outside the bracket

Expand and simplify 3(x + 5) — 4(2x + 3)

3(x+5)—4(2x +3)
=3x+15-8x—-12

=3 —-5x

1 Expand each set of brackets
separately by multiplying (x + 5) by
3and (2x +3) by 4

2 Simplify by collecting like terms:
3x—8x=-bxand 15-12=3

Expand and simplify (x + 3)(x + 2)

x+3)(x+2)
=X(Xx+2) +3(x +2)
=x2+2x+3x+6
=x2+5x+6

1 Expand the brackets by multiplying
(x+2) by xand (x + 2) by 3

2 Simplify by collecting like terms:
2X + 3x = 5x

Expand and simplify (x — 5)(2x + 3)

(x—5)(2x + 3)
=x(2x +3) —5(2x + 3)
=2x>+3x—10x — 15
=2x>—-7x—15

1 Expand the brackets by multiplying
(2x +3) by xand (2x + 3) by -5

2 Simplify by collecting like terms:
3X —10x =—7x

@ Pearson



edexcel

Surds and rationalising the denominator

A LEVEL LINKS
Scheme of work: 1a. Algebraic expressions — basic algebraic manipulation, indices and surds

Key points

e Assurd is the square root of a number that is not a square number,

for example \/E x/f)_’ x/§ etc.

e Surds can be used to give the exact value for an answer.

o ab=vax\b
b~ \b

e To rationalise the denominator means to remove the surd from the denominator of a fraction.

e To rationalise - you multiply the numerator and denominator by the surd Jb

Jb
b+c

e Torationalise you multiply the numerator and denominator by b—c

Examples

Example 1  Simplify \/ﬁ

J50 =/25% 2 1 Choose two numbers that are
factors of 50. One of the factors

must be a square humber

=25 x\2 2 Use the rule v/ab =+a x+b
=5x+/2 3 Use \25=5
=52

Example 2 Simplify J147 —Z\E

J147 212 1 Simplify \147 and 2412 . Choose
_ m_ 2 \/m two numbers that are factors of 147

and two numbers that are factors of
12. One of each pair of factors must
be a square number

=J49x\3-2J4x\3 2 Use the rule \/ab =+/a x+Jb
=7><\/§—2x2><\/§ 3 Use MZ? and \/Z:Z
=7J3-43

~383 4 Collect like terms
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Example 3  Simplify (ﬁ+\/§)(\ﬁ—\/§)

1 E d the brackets. A
(ﬁ+\/§)(\ﬁ_\/§) >-<pan e -rac es- comn;on
= 29 -T2 +27 -3 mistake here is to write (ﬁ) =49
=7_-2 2 Collect like terms:
=5 72 +27

IE T =0

T |
Example 4  Rationalise —
i g
1. ixﬁ 1 Multiply the numerator and
3 V3 B denominator by /3
1><\/§
= 2 Use 49=3
N5 NG
_ 3
3
Example 5 Rationalise and simplify ﬂ
J12
2 - 2 X@ 1 Multiply the numerator and
iz 12 2 denominator by J12
_ 2 xJ4x3 2 Simplify \/12 in the numerator.
12 Choose two numbers that are factors

of 12. One of the factors must be a
square number

55 3 Use the rule \/ab =+/ax+/b
= 2V243 4 Use J4=2
12
5 Simplify the fraction:
_ V23 2 1
6 — simplifiesto =
1 6
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Rules of indices

A LEVEL LINKS
Scheme of work: 1a. Algebraic expressions — basic algebraic manipulation, indices and surds

Key points
° am X an = am+n
a" _ _aa
[ —n:a
a
° (am)n = amn
e a’=1

1

e a"=1a ie. thenthrootofa
m

L aim :im
a

e The square root of a number produces two solutions, e.g. xﬁ: 4.

Examples

Example 1  Evaluate 10°

10°=1 Any value raised to the power of zero is
equal to 1

1
Example 2  Evaluate 92

1

J9 Use the rule a" =%/a
3

N~

9

2
Example 3 Evaluate 273

m

- (E/ﬁ)z 1 Usetherule an =(Q/§>m
32
9

2
3

27
2 Use %zB
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Example 4  Evaluate 472
L 1 »
47 = 1 Usetherule a™ =—
4 a
1
~16 2 Use 4°=16
X5
Example 5 Simplify —
2X
6X5 3 . m o
ﬁz?’x 672=3andusetherule¥=a to
X5
give 5 =x""?=x°
X
3 5
L XPxX
Example 6 Simplify N
3 5 3+5 8
XXX XX 1 Usetherule a" xa" =a™"
X4 X4 X4
m
=xt4=x 2 Use the rule a_n —am"
a

Example 7 Write BL as a single power of x
X

1
Use the rule — = a ™, note that the
a

3x
fraction % remains unchanged

Example 8 Write 4 as a single power of x
Jx

4 4 1
W:x_% 1 Use the rule an =Q/5
1 1
—4x 2 2 Usetherule —=a™"
a
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Factorising expressions

A LEVEL LINKS
Scheme of work: 1b. Quadratic functions — factorising, solving, graphs and the discriminants

Key points

e Factorising an expression is the opposite of expanding the brackets.

e A quadratic expression is in the form ax? + bx + ¢, where a # 0.

e To factorise a quadratic equation find two numbers whose sum is b and whose product is ac.
e An expression in the form x2 — y? is called the difference of two squares. It factorises to

(X=y)(x+Yy).

Examples

Example 1  Factorise 15x2y® + 9x%

15x%y3 + 9x*y = 3x?y(5y? + 3x?) The highest common factor is 3x?y.

So take 3x?y outside the brackets and
then divide each term by 3x?y to find
the terms in the brackets

Example 2  Factorise 4x? — 25y?

4x2 — 25y% = (2x + 5y)(2x — 5y) This is the difference of two squares as
the two terms can be written as
(2x)?and (5y)?

Example 3 Factorise x? + 3x — 10

b=3,ac=-10 1 Work out the two factors of

ac = —10 which add to give b =3

(5 and —-2)
Sox?+3x—10=x2+5x-2x—10 2 Rewrite the b term (3x) using these
two factors

=X(x+5)—2(x +5) 3 Factorise the first two terms and the
last two terms

=(x+5)(x-2) 4 (x+5)is afactor of both terms

@ Pearson




edexcel

Example 4

Example 5

Factorise 6x2— 11x— 10

b=-11,ac=-60

So
6x2— 11x—10=6x2— 15x + 4x — 10

=3x(2x —5) +2(2x —5)

= (2x-5)(3x + 2)

1 Work out the two factors of
ac = —60 which add to give b =-11
(=15 and 4)

2 Rewrite the b term (—11x) using
these two factors

3 Factorise the first two terms and the
last two terms

4 (2x — 5) is a factor of both terms

2
X°—4x-21
Simplify —————
plity 2x* +9x+9
x2 —4x—21 1 Factorise the numerator and the
s = denominator
2X°+9x+9

For the numerator:
b=-4,ac=-21

So
X2—4x—-21=x*—7x+3x-21

=X(X—=7)+3x—17)
=(x=7)(x+3)

For the denominator:
b=9, ac=18

So
22+ 9x+9=2x+6x+3x+9

=2x(x +3) + 3(x + 3)

=(x+3)(2x+3)
So

X*—4x-21  (Xx=T7)(x+3)
22 +9x+9  (x+3)(2x+3)
_oxX=7
~ 2x+3

2 Work out the two factors of
ac = —21 which add to give b = —4
(=7 and 3)

3 Rewrite the b term (—4x) using these
two factors

4 Factorise the first two terms and the
last two terms

5 (x—7) is a factor of both terms

6 Work out the two factors of
ac = 18 which add to give b =9
(6 and 3)

7 Rewrite the b term (9x) using these
two factors

8 Factorise the first two terms and the
last two terms

9 (x+ 3) isafactor of both terms

10 (x + 3) is a factor of both the
numerator and denominator so
cancels out as a value divided by
itself is 1
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Completing the square

A LEVEL LINKS
Scheme of work: 1b. Quadratic functions — factorising, solving, graphs and the discriminants

Key points

e Completing the square for a quadratic rearranges ax? + bx + ¢ into the form p(x + ) + r
e If a+#1,then factorise using a as a common factor.

Examples
Example 1  Complete the square for the quadratic expression x? + 6x — 2
X2 + 6X — 2 1 Write X2 + bx + ¢ in the form
b)Y (b
=(x+3)?-9-2 X+—| —-|=| +¢C
2 2
=(x+3)%-11 2 Simplify
Example 2 Write 2x2 — 5x + 1 in the form p(x + ) + r
2x2—5x+1 1 Before completing the square write
ax? + bx + ¢ in the form
Sy,
a| X“+—x [+cC
a
= Z(XZ — EXJ +1 2 Now complete the square by writing
2

X2 —gx in the form
2 2
2
<ol (x-5) (3] ]+1 (o) ()
4 4 2 2

‘2
-2l x 5] 5.1 3 Expand the square brackets — don’t

2
forget to multiply (%) by the factor
of 2

Simplify
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Sketching quadratic graphs

A LEVEL LINKS
Scheme of work: 1b. Quadratic functions — factorising, solving, graphs and the discriminants

Key points

e The graph of the quadratic function

y =ax?+bx + ¢, where a £ 0, is a curve
called a parabola.
e Parabolas have a line of symmetry and fora>0 fora<0

a shape as shown.

e To sketch the graph of a function, find the points where the graph intersects the axes.

e To find where the curve intersects the y-axis substitute x = 0 into the function.

e To find where the curve intersects the x-axis substitute y = 0 into the function.

e At the turning points of a graph the gradient of the curve is 0 and any tangents to the curve at
these points are horizontal.

e To find the coordinates of the maximum or minimum point (turning points) of a quadratic
curve (parabola) you can use the completed square form of the function.

Examples
Example 1  Sketch the graph of y = x2
Y4 The graph of y = x? is a parabola.
Whenx =0,y =0.
a = 1 which is greater
> than zero, so the graph U
0 has the shape:
Example 2 Sketch the graph of y = x> —x — 6.
Whenx=0,y=02-0-6=-6 1 Find where the graph intersects the
So the graph intersects the y-axis at y-axis by substituting x = 0.
(0,-6)
Wheny=0,x2—x—-6=0 2 Find where the graph intersects the
x-axis by substituting y = 0.
x+2)(x—3)=0 3 Solve the equation by factorising.
Xx=-20rx=3 4 Solve (x+2)=0and (x—3)=0.
So, 5 a=1which is greater
the graph intersects the x-axis at (-2, 0) than zero, so the graph \/
and (3, 0) has the shape:
(continued on next page)
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2
When (x—lj =0, x:i and
2 2

y= —% , SO the turning point is at the

point (1 —E]
2" 4

-6

(z. —63)

6 To find the turning point, complete
the square.

7 The turning point is the minimum

value for this expression and occurs
when the term in the bracket is
equal to zero.
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Solving linear simultaneous equations
using the substitution method

A LEVEL LINKS
Scheme of work: 1c. Equations — quadratic/linear simultaneous
Textbook: Pure Year 1, 3.1 Linear simultaneous equations

Key points

e The subsitution method is the method most commonly used for A level. This is because it is
the method used to solve linear and quadratic simultaneous equations.

Examples
Example 4  Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14
5x+3(2x+1) =14 1 Substitute 2x + 1 for y into the
second equation.
5x+6x+3=14 2 Expand the brackets and simplify.
11x+3=14
11x=11 3 Work out the value of x.
Sox=1
Usingy=2x+1 4 To find the value of y, substitute
y=2x1+1 x =1 into one of the original
Soy=3 equations.
Check: 5 Substitute the values of x and y into
equation1:3=2x1+1 YES both equations to check your
equation2: 5x1+3x3=14 YES answers.

Example5  Solve 2x —y = 16 and 4x + 3y = —3 simultaneously.

y=2x—16 1 Rearrange the first equation.
4x + 3(2x — 16) =3 2 Substitute 2x — 16 for y into the
second equation.

4xX + 6x — 48 =-3 3 Expand the brackets and simplify.
10x — 48 =-3

10x = 45 4 Work out the value of x.

Sox= 4%

Usingy = 2x - 1? 5 To find the value of y, substitute

y=2x43 -16 x = 41 into one of the original

Soy=-~7 equations.

Check: 6 Substitute the values of x and y into
equation1:2x 43 —(-7)=16  YES both equations to check your
equation 2: 4 x 4% +3 x (—7) = -3 YES answers.
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Solving linear and quadratic simultaneous
equations

A LEVEL LINKS
Scheme of work: 1c. Equations — quadratic/linear simultaneous

Key points

e Make one of the unknowns the subject of the linear equation (rearranging where necessary).
e Use the linear equation to substitute into the quadratic equation.
e There are usually two pairs of solutions.

Examples

Example 1  Solve the simultaneous equations y = x + 1 and x? + y2 = 13

X2+ (x+1)2=13 1 Substitute x + 1 for y into the second
equation.
XX+xX2+x+x+1=13 2 Expand the brackets and simplify.

2X2+2x+1=13

2X2+2x—12=0 3 Factorise the quadratic equation.
(2x—4)(x+3)=0

Sox=2o0rx=-3 4 Work out the values of x.
Usingy=x+1 5 To find the value of y, substitute
Whenx=2,y=2+1=3 both values of x into one of the
Whenx=-3,y=-3+1=-2 original equations.

So the solutions are
x=2,y=3 and x=-3,y=-2

Check: 6 Substitute both pairs of values of x

equation1:3=2+1 YES and y into both equations to check
and—2=-3+1 YES your answers.

equation 2: 22+ 32=13 YES

and (=3)? + (-2)’ = 13 YES




Example 2
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Solve 2x + 3y =5 and 2y? + xy = 12 simultaneously.

5-3y
2

2y +(_5—23y] y=12

X=

2
2 SYZ3Y g
2
4y? +5y—3y* =24
y? +5y—-24=0

(y+8)(y-3=0
Soy=-8ory=3

2y

Using 2x + 3y =5
Wheny=-8, 2x+3x(-8)=5, x=14.5
Wheny=3, 2x+3x3=5 x=-2

So the solutions are
x=145, y=-8 and x=-2,y=3

Check:

equation 1: 2x 145+3x (-8)=5 YES
and 2x(-2)+3x3=5 YES

equation 2: 2x(—8)% + 14.5x(-8) = 12 YES
and 2x (32 +(-2)x3=12 YES

1

Rearrange the first equation.

Substitute 5-3y for x into the

second equation. Notice how it is
easier to substitute for x than for y.

Expand the brackets and simplify.

Factorise the quadratic equation.
Work out the values of y.

To find the value of x, substitute
both values of y into one of the
original equations.

Substitute both pairs of values of x
and y into both equations to check
your answers.




