Hit the ground running Chemistry

Name:

What is this booklet for:

- This is simply designed to be a bridging Chemistry booklet.
- It has work to prepare you for the A level you are starting in September.
- It contains a series of topics that you will have covered in GCSE and it is then extended into some A level standard work.

How to use the booklet:

- 1) Read over the explanation notes and examples
- 2) Look over work from your GCSE exercise books and revision guides
- 3) Look on the internet for other guidance, google the chapter titles!
- 4) COMPLETE the Tasks in the ANSWER booklet section.

<u>Bonding</u>

When elements react together they form new compounds which have two or more elements chemically joined. Atoms bond in order to have a full outer shell as this is more stable.

There are two main types of chemical bond.

- Ionic: between a Metal and Non-metal
- Covalent: between Non-metal and Non- metal

<u>Task 1</u>

Decide if the compounds below are ionically or covalently bonded together and why?

Compound	Type of bonding
Ammonia NH3	
Zinc Oxide ZnO	
Methane CH4	
Benzene C6H6	
Potassium Dichromate K2Cr2O7	

Ionic Bonding

This is an ELECTROSTATIC ATTRACTION between 2 oppositely charged species called IONS.

The compound is formed is neutral, which means it has no overall charge.

i.e. it has an equal amount of positive and negative charge from the different ions that are making it up.

How are IONS made?

This is seen by the diagram above:

METALS: (Cations)	NON- METALS (anions)
They form Positive ions as they lose their outer	They form NEGATIVE ions as they gain
electrons to form a FULL OUTER SHELL.	electrons to form a FULL OUTER SHELL.
Calcium 2 electrons in its outer shell as an	Chlorine has 7 electrons in its outer shell so will
element so LOSES 2 electrons to become a 2+	GAIN 1 electron to become a 1- ion
ion	

<u>Task 2</u>

Draw out Atom and Ions for the following ionic compounds (like the calcium Oxide diagram above)

1) Aluminium Oxide

2) Lithium Oxide

3) Barium Nitride

Formula of Ionic compounds

When we form an lonic compound we have oppositely charged ions attracted together so that a neutral compound is formed.

This means there is a balance between the positive metals ions and negative non-metal ions.

You swap the NUMBERS of the charge over

If a 1 you ignore it

If get 2 numbers the same ignore them

Aluminium Oxide made from Aluminium ions and Oxide ions.

<u>Task 3</u>

Work out the formula of the following ionic compounds.

Silver chloride	
Lithium sulphate	
Ammonium Hydroxide	
Potassium Dichromate	
Iron (II) Nitrate	
Magnesium bromide	

Barium oxide	
Zinc chloride	
Ammonium chloride	
Ammonium carbonate	
Aluminium bromide	
Iron(II) sulfate	

Covalent bonding

The covalent bond is made up from non-metal atoms that want to bond together.

Covalent bonds are made from the atoms sharing their electrons to get a FULL OUTER SHELL.

<u>Task 4</u>

Draw out the Dot/ Cross diagrams and Line diagram of the following molecules:

1) Ethene, C₂H₆

- 2) Ammonia, NH₃
- 3) Hydrogen Peroxide, H₂O₂
- 4) Hydrogen Sulphide, H₂S

5) Nitrogen, N₂

6) Carbon dioxide, CO₂

<u>Structure</u>

There are 4 main structures you need to be aware of

- 1) Metallic structure
- 2) Giant Ionic
- 3) Giant covalent / Macromolecular
- 4) Simple Molecular

Task 5: Fill in the table:

			Cova	lent	
	Metallic bonding	lonic	Simple molecular covalent	Giant molecular covalent	
Definition					
Structure	fixed cation (+) $(+)$ $(+$				
Examples					
Strength of bond				Strong bonds between atoms (strong intramolecular forces)	
Melting point/ boiling point		High- often solids at room temperature			
Solubility			Some dissolve in water		
Do they conduct electricity?			They do not conduct electricity		

Equations

State symbols

- Gas (g)
- Liquid (I)
- Solid (s)
- Aqueous (aq)

Rules:

- 1. You must have the same number of each type of atom on both sides of the equation
- 2. You can only add big numbers to the front of substances
- 3. Big numbers in the front of substances multiply every atom in that substance
- 4. Balance:
 - a. Metals first
 - b. Then non-metals (not including hydrogen and oxygen)
 - c. Then balance hydrogen and oxygen
 - d. Finally do a final check

<u>Task 6</u>

Balance the following equations:

1) N2	+	H ₂	\longrightarrow	NH ₃		
2) CH4	+	O ₂	\longrightarrow	CO_2	+	H ₂ O
3) Na	+	H ₂ SO ₄	\longrightarrow	Na ₂ SO ₄	+	H ₂
4) SO ₂	+	NaOH	\longrightarrow	Na ₂ SO ₃	+	H ₂ O
5) C ₂ H ₅ OH	+	O ₂	\longrightarrow	CO_2	+	H ₂ O
6)C +	O ₂			►	CO	
7)Ba+.	H ₂ O				Ва(ОН) ₂ +H ₂
8)C ₂ H ₆	+C) ₂			CO ₂ +	H ₂ O
9)HCI+	Mg	(OH) ₂			MgCl ₂	+ H ₂ O
10)N ₂ +	O ₂				NO	
11)Fe ₂ C) ₃ +	C			Fe +	CO ₂
12)CH ₃ (CH ₂ OF	I +[O]			CH ₃ CC)OH +H ₂ O
13)HNO ₃ +CuO		→Cu(NO ₃) ₂ + H ₂ O				
14)Al ³⁺	+e	-			Al	
15)[Fe(I	H ₂ O) ₆] ³	³⁺ +CO ₃ ²⁻			Fe(OH)	$H_{2}O_{3}(H_{2}O)_{3} + \dots CO_{2} + \dots H_{2}O_{3}$

8

<u> Task 7:</u>

For each one, write a balanced symbol equation for the process. The reaction between silicon and nitrogen to form silicon nitride Si₃N₄. 2. The neutralisation of sulfuric acid with sodium hydroxide. The preparation of boron trichloride from its elements. 3. The reaction of nitrogen and oxygen to form nitrogen monoxide. 4. The combustion of ethanol (C_2H_5OH) to form carbon dioxide and water only. 5. 6. The formation of silicon tetrachloride (SiCl₄) from SiO₂ using chlorine gas and carbon. The extraction of iron from iron(III) oxide (Fe_2O_3) using carbon monoxide. 7. 8. The complete combustion of methane. 9. The formation of one molecule of CIF₃ from chlorine and fluorine molecules. **10.** The reaction of nitrogen dioxide with water and oxygen to form nitric acid.

Calculating relative formula mass

E.g. Carbon dioxide, CO₂

The relative formula mass is therefore $Mr = (12.0 \times 1) + (16.0 \times 2) = 44.0$

E.g. Magnesium hydroxide Mg(OH)₂

The relative formula mass is therefore: $(24.3 \times 1) + (2 \times (16.0 + 1.0)) = 58.3$

<u>Task 8:</u>

Calculate the relative formula mass of the following compounds:

- 1. Magnesium oxide MgO
- 2. Sodium hydroxide NaOH
- 3. Copper sulfate CuSO4
- 4. Ammonium chloride NH4Cl
- 5. Ammonium sulfate (NH₄)₂SO₄

Empirical formula

<u>Task 9:</u>

 The smell of a pineapple is caused by ethyl butanoate. A sample is known to contain only 0.180 g of carbon, 0.030 g of hydrogen and 0.080 g of oxygen. What is the empirical formula of ethyl butanoate?

 Find the empirical formula of a compound containing 0.0578 g of titanium, 0.288 g of carbon, 0.012 g of hydrogen and 0.384 g of oxygen.

 300 g of a substance are analysed and found to contain only carbon, hydrogen and oxygen. The sample contains 145.9 g of carbon and 24.32 g of hydrogen. What is the empirical formula of the compound?

4. Another 300 g sample is known to contain only carbon, hydrogen and oxygen. The percentage of carbon is found to be exactly the same as the percentage of oxygen. The percentage of hydrogen is known to be 5.99%. What is the empirical formula of the compound?

<u>Moles</u>

In its most basic form the 'MOLE' is just a word used to describe a number.

e.g.	Couple	2
	Dozen	12
	Mole	6.02 x 10 ²³

Why this large number?

It was found that this number of ATOMS of any element is equal to the MASS NUMBER of this element in grams.

e.g.

 6.02×10^{23} carbon atoms is equal to 12g 6.02×10^{23} neon atoms is equal to 20g

This leads to the FIRST mole equation.

Moles = <u>Mass</u> R.A.M (relative atomic mass)

e.g. How many moles are there in 24g of carbon?

Moles =	<u>Mass</u> R.A.M
Moles =	<u>24</u>

- 12
- Moles = 2 moles of carbon

<u>Task 10:</u>

- 1. Calculate the number of moles in the following?
- a) 59 g of cobalt
- b) 4.14 g of lead
- c) 1.08g of gold
- d) 62 g of sodium Oxide Na₂O
- e) 174 g of lithium bromide LiBr
- f) 3.2 g of oxygen
- g) 1.24 g of Ammonia
- 2. Calculate the :
- a) Mass of 2 moles of calcium metal
- b) 0.25 moles of lead carbonate PbCO₃
- c) The formula mass of a compound which has 0.5 moles of mass 14g

- 250g of hydrated copper sulphate (CuSO₄.x H₂O) is collected & a student want to calculate the number of moles of water attached to the copper sulphate, the x value. The student completely dried the copper sulphate & the new mass was found to be 160g
- a) Calculate the moles of copper sulphate
- b) Calculate the mass of lost water
- c) Calculate the number of moles of lost water
- d) Therefore deduce the formula of the hydrated copper sulphate.

Moles and solution

When we dissolve a solid in water we create a solution. We use a different mole equation to calculate the moles in the solutions we create.

e.g. How many moles are there in 250 cm 3 of 0.1 M Hydrochloric acid ?

Moles	=	<u>Conc x Vol</u> 1000
	=	<u>0.1 x 250</u> 1000

0.025 Moles

<u>Task 11</u>

=

- 1) Calculate the moles in 40 cm³ of 5M of sodium hydroxide solution
- 2) What is the concentration when you dissolve 2 moles of acid in 100cm³ of water
- 3) How many moles are there in 500 cm³ of 0.1 mol/dm³ of salt solution
- 4) What is the concentration of 0.25 moles of alkali in 25 cm³
- 5) How many grams of potassium oxide (K₂O) are needed to make 100 cm³ of a 0.5M solution ?
- 6) What is the concentration of a solution when we dissolve 730g of hydrochloric acid in 350 cm³?
- 7) What is the mass of calcium oxide, CaO needed to make a 250 cm³ volume of 0.5 M solution?

Final mole equation work

E.g. Calcium oxide reacts with water to form calcium hydroxide.

CaO + $H_2O \longrightarrow Ca(OH)_2$ If I started with 28g of the calcium oxide what mass of calcium hydroxide would I make, and if it was in 100cm³ of water what would its concentration be

1 Molar Ratio 1 1 CaO + H_2O $Ca(OH)_2$ 28g Moles = Mass RFM = 28 56 =0.5 moles 0.5 0.5 0.5 New molar ratio $Mass = Moles \times RFM$ = 0.5 x 74

And the solution concentration would be:

0.5 moles 100ml

= 37g

$$Conc = \frac{1000 \text{ x mole}}{Vol}$$

Conc =
$$\frac{1000 \times 0.5}{100}$$

<u>Conc = 5 mol/dm^3 </u>

<u>Task 12</u>

- Calcium cyanamide CaCN₂ reacts with water to form calcium carbonate and ammonia CaCN₂ + 3H₂O → CaCO₃ + NH₃ What mass of calcium carbonate is formed if 20g of the CaCN₂ is reacted with excess water.
- 2) Magnesium burns in air to make magnesium oxide

$2Mg + O_2 \longrightarrow 2MgO$

What mass of magnesium would you need to create 0.8g of magnesium oxide powder.

3) Iron reacts with water to form iron oxide and hydrogen

+
$$4H_2O \longrightarrow Fe_3O_4 + 4H_2$$

If the student starts with 1.68g of iron and it undergoes a complete reaction

- i) Number of moles of iron started with?
- ii) Moles of tri Iron oxide formed
- iii) Mass of tri iron oxide formed

3Fe

- iv) The concentration of this solution if we had 500ml of water in the reaction?
- 4) 25 cm³ of 0.1 M HCl reacts with 50cm³ of NaOH solution fully What is the concentration of the NaOH solution.

This is a measure of the useful products compared to all the products.

e.g. Ethanol is decomposed into useful ethane and waste water.

RFM	Ethanol C₂H₅OH 46	Ethen C ₂ H ₄ 28	e + +	Water H₂O 18
	Atom economy	<u>= mass of useful pro</u> mass of all reacta		100
		= <u>28</u> x 100 46		
Task	13	= <u>60.9%</u>		

What is the Atom economy in:

1) Hydrogen is used in synthesising ammonia and is made on a large scale from reacting methane with water

methane + water ==> hydrogen + carbon monoxide

 $CH_4 + H_2O = > 3H_2 + CO$

2) In the blast furnace where we form Iron .

 $Fe_2O_{3(s)} + 3CO_{(g)} = = > 2Fe_{(l)} + 3CO_{2(g)}$

Percentage yield

This is the second method we use to calculate the efficiency of the reaction. This gives an idea of what is actually formed in reality as compared to what we would expect to be formed.

$$\frac{\text{Percent}}{\text{Yield}} = \frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\%$$

e.g. Ethanol is decomposed into useful ethane and waste water.

Ethanol Ethene Water + + H₂O C₂H₅OH C_2H_4 We create 1.4 g of the ethene from a starting mass of 4.6g of ethanol, what is the percentage yield.

CALC Moles = <u>Mass</u> RFM Moles = 4.646 = 0.1 moles $Mass = Moles \times RFM$

 $= 0.1 \times 28$

 $= 2.8 \, g$

This is the theoretical yield amount i.e this is the full amount that could possibly be formed

Final calc percentage = x 100 Actual yield Theoretical 1.4 x 100 = 2.8 50% =

Task 14

1) When 5.00 g of KClO₃ is heated it decomposes according to the equation:

$$2\mathsf{KCIO}_3 \rightarrow 2\mathsf{KCI} + 3\mathsf{O}_2$$

0.1 moles : 0.1 moles

a) Calculate the theoretical yield of oxygen.

b) Give the % yield if 1.78 g of O_2 is produced.

c) How much O2 would be produced if the percentage yield was 78.5%?

2) The electrolysis of water forms H_2 and O_2 .

$2H_2O \rightarrow 2H_2 + O_2$

What is the % yield of O_2 if 12.3 g of O_2 is produced from the decomposition of 14.0 g H₂O?